
Triana User Guide

The Triana Team

Preface

Preface stuff to go here

i

Contents

1 Overview 1
1.1 Introduction . 1

2 Getting Started 2
2.1 Download, Installation and Configuration 2
2.2 CVS Access . 3

2.2.1 Conventions . 3
2.2.2 CVSRoot and Passwords . 3
2.2.3 A Word About Directory Structure 4
2.2.4 Easy Install . 4
2.2.5 Developer Install . 6
2.2.6 Other Install . 8

2.3 Workflow Basics . 8
2.3.1 Simple Workflow Example 8
2.3.2 Group Tools . 8

3 Distributed Computing with Triana 9
3.1 Overview . 9
3.2 Web Services . 9

3.2.1 Web Service Configuration 10
3.2.2 Discovering Web Services 11
3.2.3 Importing Web Services . 12
3.2.4 Conncecting Web Services 12
3.2.5 Bible Translation Example 13
3.2.6 Complex Data Types . 14
3.2.7 Deploying Web Services . 15

3.3 P2PS . 17
3.4 GAT . 17

4 Applications and Case Studies 18

ii

4.1 Data Analysis with Triana . 18
4.2 Audio Processing with Triana . 18

5 Extending Triana 19
5.1 Writing your own tools . 19

5.1.1 Using the Tool Wizard . 19
5.2 Advanced Tool Techniques . 19

5.2.1 Showing and Hiding a Unit’s Parameter Panel 19
5.2.2 Pausing Unit Execution . 20

5.3 Triana as a Workflow Editor . 23

6 Demos 24

iii

List of Figures

2.1 example build.properties file . 8

3.1 Web Service Configuration Dialog. 10
3.2 Web Service tools in the Tool Tree. 11
3.3 Using StringGen and StringViewer to provide input to and dis-

play the output from a temperature conversion web service. . . . 12
3.4 A simple bible translation workflow. 14
3.5 Generating/viewing complex data types using WSTypeGen and

WSTypeViewer. 15
3.6 Dialog for deploying a task/group task as a web service. 16
3.7 Using xsd tools to ensure standard input/output XML types are

used when deploying a web service. 17

iv

Chapter 1

Overview

1.1 Introduction

1

Chapter 2

Getting Started

2.1 Download, Installation and Configuration

Step 1 - Download
Download the latest Triana release from http://www.trianacode.org.

Step 2 - Set Environment Variable
Set an environment variable for your system, $TRIANA for Unix like systems
or %TRIANA% for Windows, to point the top level triana directory, the
location that you saved and unpacked the download to.

e.g. (from the command prompt)

set TRIANA=C:\triana Windows
setenv TRIANA=/home/user/triana unix - tcsh
export TRIANA=/home/user/triana unix - bash

Step 3 - Build Triana
Run the Triana build script (buildTriana), which is located in thetriana/bin
directory.

e.g. (from the command prompt)

C:\triana\bin\buildTriana.bat Windows
/home/user/triana/bin/buildTriana unix

Step 4 - Run Triana
Run Triana using the triana script located in the triana/bin directory.

e.g. (from the command prompt)

2

C:\triana\bin\triana.bat Windows
/home/user/triana/bin/triana unix

2.2 CVS Access

This section describes the steps in correctly checking out the source code for
the core Triana and Triana toolboxes from the cvs repository and building from
the source code. If you don’t know how to use a CVS client or don’t have a
CVS account, then it is recommended that you follow the instructions in section
2.1.

2.2.1 Conventions

Note: These instructions assume you have the necessary user accounts and
passwords. It is aimed at command line cvs users. WinCVS or similar users
should be able to follow the instructions by using the repository and module
names within their particular CVS Client.

• Text written this font should be typed as command line input. Com-
mands should be entered without line breaks unless explicitly instructed.
(This includes line breaks due to book formatting)

• Text written in this font and surrounded by < ... > should be replaced by
the users appropriate details.

• Text in this font signifies the unix command line prompt, the text following
it will be the command to type.

2.2.2 CVSRoot and Passwords

The “CVSROOT” you should you will depend on whether you have read only
“pserver” access or write “ext” access. This document assumes “pserver”,
if you don’t know then ask the person who gave you your user name and
password.

For the Core Triana and default Toolbxes repositories there is anonymous
“pserver” access, use the username <anonymous> with no password, just hit
return at the password prompt.

3

2.2.3 A Word About Directory Structure

For administration reasons Triana is split into a number of different packages
which are stored in various CVS repositories. Some of these are project specific
and not public so don’t assume that because something is listed in this document
that you will be able to get the source code from the CVS server.

The public packages are:

1. Core Triana. The Triana Environment itself.

2. Toolboxes. The default toolboxes that come with Triana.

3. Toolboxes-dev. The unstable toolboxes that developers are currently work-
ing with. Use at you own risk.

The project specific packages are:

1. GEO. The Gravitational Waves tools.

2. Gravity. Example tools from the book “Gravity From The Ground Up” by
Bernard Schutz.

3. GriPhyN. Tools from collaboration work with the GriPhyN project.

There are two standard ways to structure a Triana distribution from CVS, de-
pendant on: whether you expect to be making regular changes to the source
code under your control and/or you want to do frequent updates for the latest
version from CVS; Or you just want to check out the latest version and build it
once. CVS allows checking modules out inside other modules which will give
the same structure as the packaged version of Triana but it will complain if an
update or commit is attempted in the source tree where there is a foreign module
lower down the tree.

2.2.4 Easy Install

These instructions will checkout and install Triana to the same structure as the
packaged release version. It is fine for most users however if you expect to use
CVS for more than updating small numbers of files it is suggested you use the
other set of instructions.

This install will put all of the various toolboxes inside the Triana source tree and
they will need to be removed to perform a cvs update on the core Triana code
and then checked back out again.

4

From the command line:

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
triana login
(Logging in to username@trianacode.org)
CVS password: <userpassword>

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
triana checkout -P triana

prompt$ cd triana

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
trianatools login
(Logging in to username@trianacode.org)
CVS password:] <userpassword>

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
trianatools checkout -P toolboxes

Note: The rest of the Triana modules from CVS are optional and depend on
project permissions to access.

prompt$ cd toolboxes

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
trianatools checkout -P toolboxes-dev

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
geotools login
(Logging in to username@trianacode.org)
CVS password:] <userpassword>

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
geotools checkout -P GEO

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
gravity login
(Logging in to username@trianacode.org)
CVS password:] <userpassword>

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
gravity checkout -P GravityFromTheGroundUp

5

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
griphyntools login
(Logging in to username@trianacode.org)
CVS password:] <userpassword>

prompt$ cvs -d :pserver:<username>@trianacode.org:/home/cvsroot/
griphyntools checkout -P GriPhyN

After those CVS commands you should have a directory structure like this:

triana/
/bin/
/toolboxes/

/Audio
/... other standard toolboxes
/toolboxes-dev
/GEO
/GravityFromTheGroundUp/
/GriPhyN

The toolbox structure is the import thing, there will be extra directories under
triana/ not mentioned here.

Build and Run

To build set an environment variable for your system, $TRIANA for Unix like
systems or %TRIANA% for Windows, to point the top level triana directory. Run
the build script, buildTriana for Unix or buildTriana.bat for Windows:

prompt$ $TRIANA/bin/buildTriana

Run the start script, triana or triana.bat:

prompt$ $TRIANA/bin/triana

2.2.5 Developer Install

If you are intending to write or modify any code within the various CVS modules
or you just want to regularly update the modules from CVS. Then we suggest
that you keep all the CVS modules in their own separate directory stuctures.
The Ant1 build file is written to be able to build from default either the previous

1http://ant.apache.org/

6

structure or a directory structure where all the cvs modules are at the same level
in the file system.

For instance my directory structure looks like this:

project/triana/
project/toolboxes/
project/toolboxes-dev/
project/toolboxes_other
project/toolboxes_other/GEO
project/toolboxes_other/GravityFromTheGroundUp
project/toolboxes_other/GriPhyN

So from a sensible starting directory run the CVS commands from section 2.2.4
with the cd commands so that the Triana core and default toolboxes modules
from cvs reside in your current directory.

Note: The GEO, Gravity and Griphyn toolboxes should really reside in a sepa-
rate subdirectory. Here I’ve created a directory called “toolboxes_other”, this is
because Triana assumes that a toolbox contains packages, so GEO for instance
is the top level package for the GEO tools. When Triana attempts to locate tools
it uses the following path :-

[toolbox][tool package]*[toolname]

e.g. [/project/toolboxes/][SignalProc/][Input/][Wave]
or [/project/toolboxes_other/][GEO/][Algorithms/][SaturationMon]

The build and run instructions are almost the same as for the easy install.

• Set the TRIANA environment variable to point to the triana directory.

• Either edit the build file (build.xml in the main Triana home directory)
and set the appropriate toolbox location variables in the “User Editable”
section, or the preferred method add a new file called “build.properties”
to the Triana home directory with the properties and their values. the
contents of my “build.properties” file can be seen in figure 2.1

• Run the buildTriana script.

7

javac.flag.debug=on
javac.flag.deprecation=on
triana.geo.tools=../toolboxes_other/GEO
triana.gravity.tools=../toolboxes_other/ \

GravityFromTheGroundUp
triana.griphyn.tools=../toolboxes_other/GriPhyN}

Figure 2.1: example build.properties file

Note: Unlike the standard installation, Triana will not automatically pick
up the toolboxes when it is started so you will have to add those
within Triana from the menu Tools, Edit Tool Box Paths. In my case,
I select the directories - /project/toolboxes/, /project/toolboxes-dev/,
/project/toolboxes_other/.

2.2.6 Other Install

You can actually have your toolbox modules anywhere you like in your file
system and still have the build process pick them up and compile them. In the
file build.xml there is a commented section titled “USER EDITABLE PROP-
ERTIES” within this section there are a number of commented out proper-
ties for the various toolbox modules. Uncomment any of these and set them
to the appropriate location to override the default locations. Alternatively
add a file called “build.properties” with the appropriate lines containing -
propertyname=value.

2.3 Workflow Basics

2.3.1 Simple Workflow Example

2.3.2 Group Tools

8

Chapter 3

Distributed Computing with
Triana

3.1 Overview

3.2 Web Services

An important current paradigm in distributed computing is web services. Web
services are remote software components accessible using standard network
protocols and with defined XML-based interfaces. Already a large number of
web service components are available via the Internet, and increasingly legacy
applications are being wrapped in web service interfaces.

In Triana terms, web services function exactly as locally available tools. A web
service receives input data, performs some operation on that data, and returns
results. Due to this similarity, Triana allows the user use web services within a
workflow as if they are standard tools. Once a web service has been discovered
or imported (see Sections 3.2.2 and 3.2.3), it appears as a tool in the tool tree
alongside the other tools and can be connected into a Triana workflow in exactly
the same manner of other tools.

As well as discovery and importing web services, Triana allows the user to
deploy a workflow subsection as a web service for other users (including other
Triana users) to access. We discuss this more in Section 3.2.7.

9

Figure 3.1: Web Service Configuration Dialog.

3.2.1 Web Service Configuration

Web service configuration can be done using the Services→Configure menu op-
tion, and the selecting Configure next to the web service option. It should be
noted that Triana automatically loads the last used web service configuration
and therefore this configuration step needs only be done if you are changing
the web service options, e.g. using a different UDDI repository. It should also
be noted that once web services features (e.g. discovery) have been utilized the
configuration cannot be changed within the current running Triana. This will
be indicated by a disabled Configure option.

The web service configuration dialog (see Figure 3.1) is split into two panels,
Basic and Advanced. The Basic panel enables the web service HTTP port and the
UDDI repository to be set. The HTTP port is the port used by services created
within Triana (see Section 3.2.7) only. If using this feature then this port must be
open on the local firewall otherwise users will not be able to access the services.
For simply invoking external web services not port need to be opened.

The UDDI repository is used by Triana to discover services (see Section 3.2.2. By
default the XMethods (www.xmethods.net) is set, but additional repositories can
be added. Note that when adding a UDDI repository only the inquiry address
is required, the publish address is only required if deploying services within
Triana, and a username/password are only needed if required by the UDDI
instance.

To publish in some UDDI repositories trust stores are required. If this is the case

10

Figure 3.2: Web Service tools in the Tool Tree.

then the location of the trust store file should be specified in the config.xml
which is located in the /.wspeer/admin directory. Dummy trust store files
can be found in the triana/system directory, these work for some UDDI in-
stances.

The advanced panel allows additional properties to be configured, such as proxy
addresses and security. Information on these properties may be found on the
WSPeer website (www.wspeer.org).

3.2.2 Discovering Web Services

Once that a UDDI repository has been configured, web services can be discov-
ered very simply using the Services→Discover Services menu option. This option
displays a dialog prompting for the name of the service to search for. This can
either be the exact name or can include % as a wildcard character. For example,
‘C%’ will search for all web services beginning with the letter C.

When a web service is discovered, tools representing each of the operations
on that web service are inserted into the Web Services package in the tool tree,
alongside the existing locally available tools, as shown in Figure 3.2.

11

3.2.3 Importing Web Services

If a web service is not listed in a UDDI repository, then it can be imported
directly into Triana from its WSDL description. This is done through selecting
the Services→Import Service menu option, which causes a dialog requesting the
service location to be displayed. This service location is the full http address
of the WSDL document specifying the web service to be imported1. The web
service at the service location will be imported into the the Web Services package
in the tool tree.

3.2.4 Conncecting Web Services

Once a web service has been discovered/imported and appears in the user’s tool
tree, it can be instantiated by dragging the tool onto the main workspace (in the
same way locally available tools are instantiated). Web services tasks appear in
red on the workspace.

Each input node on an instantiated web service task represents an element of the
input message for that operation, and each output node represents an output
message element. Information on the required input/output types for a web
service is displayed when the mouse is hovered over the task.

Figure 3.3: Using StringGen and StringViewer to provide input to and display
the output from a temperature conversion web service.

Locally available tools can be used to provide the input to and display the
output from web services. Two useful local tools are Common.String.StringGen

1For example, an web service interface to Altavista’s BabelFish language is located at
http://www.xmethods.net/sd/2001/BabelFishService.wsdl

12

and Common.String.StringViewer, which are used to generate string input and
display string output respectively. These tools can also be used to input/output
standard numerical data types (int, double etc.) as Triana automatically converts
to/from the required type. In Figure 3.3 we show StringGen and StringViewer
being used as input and output for a temperature conversion service. Other
local tools can also be used as long as their output/input type is compatible with
the type required by the web service, or alternatively the output from one web
service can be directly piped to another. We look at handling complex data types
in Section 3.2.6.

A workflow containing web services is executed as for a standard Triana work-
flow (i.e. by pressing the run button).

3.2.5 Bible Translation Example

In this section we demonstrate the creation of a simple bible translation
workflow using third-party web services. This example uses the XMethods
UDDI repository, so the following UDDI inquiry and publish addresses should
be specified in the configuration (see Section 3.2.1):

Inquiry - http://uddi.xmethods.net/inquire
Publish - https://uddi.xmethods.net/publish

The two web services we wish to use are BabelFish2, an interface to AltaVista’s
Babelfish service, and BibleVerses, a web service for extracting verses from the
bible. The easiest way to import these web services is using the Services→Disover
Services menu option, and then specifying ‘B%’ in the Discover Service dialog
(this queries the UDDI for all tools beginning with B).

Once the BabelFish and BibleVerses web services have been discovered, they
will appear as tools in the Web Services toolbox on the tool tree. Each of these
services should be dragged onto the workspace, along with local StringGen
and StringViewer tools, to create the workflow shown in Figure 3.4. StringGen
and StringViewer are in the Common.Input and Common.Output packages
respectively.

In this workflow StringGen provides the input for BibleVerses. If we double-
click on StringGen and enter ‘Genesis 1:1-7’ in the input dialog, then this input

2Online documentation for BabelFish and BibleVerses can be found at www.xmethods.net.

13

Figure 3.4: A simple bible translation workflow.

will cause BibleVerses to extract the first seven verses from the bible (Genesis
chapter 1, verses 1 to 7). The output from BibleVerses is used to provide the
second input for BabelFish, which is the text that is translated. The first input
to BabelFish is provided by StringGen1. This is the languages that the text
should be translated from/to. Using StringGen1 to specify ‘en_fr’ indicates we
wish to translate from English to French. The output from BabelFish is sent to
StringViewer.

Pressing the play icon on the tool bar will run the bible translation workflow we
have created, and hopefully the ‘Genesis 1:1-7’ extract from the bible, translated
into French, will be displayed in StringViewer (double-click on StringView view
the result).

3.2.6 Complex Data Types

In Triana there are two ways to handle web services that require complex data
types: use the dynamic web service type generator and viewer, or generate static
type classes and create custom tools.

The input to a web service that requires a complex type can be automatically gen-
erated using the WSTypeGen tool, which resides in the Common.WebServices
toolbox. Similarly, the complex output from a web service can be viewed us-
ing the WSTypeViewer tool, which is also found in the Common.WebServices
toolbox. To use these two tools simply connect them to the web service task
(as shown in Figure 3.5). The act of connecting them to the web service will
cause a form for inputting/viewing the complex type to be dynamically gen-
erated. This form can be accessed by either double-clicking on the WSType-

14

Figure 3.5: Generating/viewing complex data types using WSTypeGen and
WSTypeViewer.

Gen/WSTypeViewer task, or by right-clicking and selecting Properties from the
pop-up list.

Although WSTypeGen and WSTypeViewer are useful for testing web services
that use complex types, for more long-term solutions it is generally required
that static classes are generated for the complex types. Static type classes can
easily be generated using a utility such as Apache’s WSDL2Java3. Utilities such
as WSDL2Java parse the WSDL description of the web service and generate a
set of Java classes for the web service and the types used within that service. It
is easiest if these classes are created in the same location as the tools that will
access them (same Java base directory).

Once static classes have been created for the complex types, custom Triana tools
for populating the types with data or converting between types must be created.
These tools should be able to access the complex type classes in the same way as
for any Java class. We describe creating custom Triana tools in section 5.1.

3.2.7 Deploying Web Services

As well as using external web services, Triana provides the mechanism for
deploying user workflows as fully functions web services. These deployed web
services can either be used within a local Triana workflow, allowing some of

3See http://ws.apache.org/axis/java/user-guide.html

15

the processing to be handled by a remote resource, or by third-party users. It
should be noted that third-party users do not have to use Triana to access these
web services.

In order to deploy web services Triana must first be configured with a UDDI
to which you have both publish and inquiry access (see Section 3.2.1). This
includes configuring the trust key store if required. Secondly, Triana launcher
services must be run on the machine(s) that will host the deployed services. To
do this Triana should be installed on those machines and the following command
executed from the command-line:

TrianaService -ws

A web service can be created from either a single task or a group of tasks (see
Section 2.3.2). To deploy the task/group task as a web service right-click on the
task and select Create Service. This will cause a dialog to appear with a list of
the locations where the web service can be hosted (as shown in Figure 3.6). This
list will include the available launcher services (see above) along with a ’Local
Service‘ option. Creating a local service means that the web service is hosted
within the local Triana as opposed to on a remote site. Note that it can take
a while for Triana to discover the available launcher services from UDDI; they
automatically appear in the list once discovered.

Figure 3.6: Dialog for deploying a task/group task as a web service.

Once a host has been chosen, Triana will attempt to deploy a web service on
that host. While this process is taking place, the task in the workflow will
appear with red stripes. The task becoming completely red indicates that the
deployment has been successful and that the web service is ready to be used.
As mentioned before, web services deployed using Triana can be used either
within Triana or by third-party users.

16

Figure 3.7: Using xsd tools to ensure standard input/output XML types are used
when deploying a web service.

The input and output data types for deployed web services are automatically
determined by Triana. If the input/output types from the task being distributed
coincide with a standard XML type (e.g. java.lang.String, java.lang.Integer etc.)
then that standard XML type is assigned. For non-standard types Triana assigns
a string as the input/output type and assumes that the data received by the web
service will have been serialized to a string using JSX. Such web services can be
seamlessly handled by Triana but will be difficult for third-party users to use.
It is recommended that standard types are used whenever possible, and that
the tools xsd_string, xsd_double etc. are appended to the start of the workflow
subsection being distributed to ensure the correct standard type is used, as
illustrated in Figure 3.7. These tools can be found in the Common.WebServices
toolbox.

3.3 P2PS

3.4 GAT

17

Chapter 4

Applications and Case Studies

4.1 Data Analysis with Triana

4.2 Audio Processing with Triana

18

Chapter 5

Extending Triana

5.1 Writing your own tools

5.1.1 Using the Tool Wizard

5.2 Advanced Tool Techniques

In this section we look at some more advanced techniques that a tool developer
may wish to use.

5.2.1 Showing and Hiding a Unit’s Parameter Panel

Problem

You want to simulate the user double clicking on a task to display the unit
parameter panel.

Solution

Call the method public void showParameterPanel() to display the unit’s
parameter panel and public void showParameterPanel() to hide the panel
again. These methods are inherited from the Unit superclass.

Discussion

19

5.2.2 Pausing Unit Execution

Problem

You want to pause the execution of your unit programmatically until some event
happens.

Solution

Pause the thread that is running your unit and interrupt on your desired event
to resume processing.

Discussion

Say for instance that you wish to pause the execution of your unit, between the
point in the main process() method where the unit gets input from its input
node, and the point where it outputs the result. The execution should halt until
a particular parameter has been updated.

The preferred mechanism for doing this is to cause the current thread to sleep,
interrupting the thread on the parameter being updated.

package UserGuide;

import triana.unit.Unit;

/**
* An example unit that pauses for a parameter to be updated
*/
public class PauseExample extends Unit {

// parameter data type definitions
private String someValue;

// private reference to the current thread
private Thread currentThread;

// flags
private boolean stopped;
private boolean selecteddone;

/*
* Called whenever there is data for the unit to process
*/
public void process() throws Exception {

java.lang.Object input = (java.lang.Object) getInputAtNode(0);

stopped = false;
selecteddone = false;

20

// Insert main algorithm for PauseExample
currentThread = Thread.currentThread();

while (!(selecteddone || stopped)) {
try {

Thread.sleep(Long.MAX_VALUE);
}
catch (InterruptedException except) {
}

}
output("I’m finished");

}

/**
* This is called when the network is forcably stopped by the user. This should be over-ridden
* with the desired tasks.
* <p/>
* The current thread needs to be interupted in the case of the user halting the execution.
*/
public void stopping() {

super.stopping();
stopped = true;
currentThread.interrupt();

}

/**
* Called when the unit is created. Initialises the unit’s properties and parameters.
*/
public void init() {

super.init();

// Initialise node properties
setDefaultInputNodes(1);
setMinimumInputNodes(1);
setMaximumInputNodes(1);

setDefaultOutputNodes(1);
setMinimumOutputNodes(0);
setMaximumOutputNodes(Integer.MAX_VALUE);

// Initialise parameter update policy and output policy
setParameterUpdatePolicy(PROCESS_UPDATE);
setOutputPolicy(CLONE_MULTIPLE_OUTPUT);

// Initialise pop-up description and help file location
setPopUpDescription("An example unit that pauses for a parameter to be updated");
setHelpFileLocation("PauseExample.html");

21

// Define initial value and type of parameters
defineParameter("someValue", "", USER_ACCESSIBLE);

// Initialise GUI builder interface
String guilines = "";
guilines += "Choose one $title someValue Choice [choice1] [choice2]\n";
setGUIBuilderV2Info(guilines);

}

/**
* Called when the unit is reset. Restores the unit’s variables to values specified by the
* parameters.
*/
public void reset() {

// Set unit variables to the values specified by the parameters
someValue = (String) getParameter("someValue");

}

/**
* Called when the unit is disposed of.
*/
public void dispose() {

// Insert code to clean-up PauseExample (e.g. close open files)
}

/**
* Called a parameters is updated (e.g. by the GUI)
*/
public void parameterUpdate(String paramname, Object value) {

// Code to update local variables
if (paramname.equals("someValue")) {

someValue = (String) value;
selecteddone = true;
if (currentThread != null)

currentThread.interrupt();
}

}

/**
* @return an array of the types accepted by each input node. For node indexes not covered the
* types specified by getInputTypes() are assumed.
*/
public String[][] getNodeInputTypes() {

return new String[0][0];
}

22

/**
* @return an array of the input types accepted by nodes not covered by getNodeInputTypes().
*/
public String[] getInputTypes() {

return new String[]{"java.lang.Object"};
}

/**
* @return an array of the types output by each output node. For node indexes not covered the
* types specified by getOutputTypes() are assumed.
*/
public String[][] getNodeOutputTypes() {

return new String[0][0];
}

/**
* @return an array of the input types output by nodes not covered by getNodeOutputTypes().
*/
public String[] getOutputTypes() {

return new String[]{"java.lang.Object"};
}

}

5.3 Triana as a Workflow Editor

23

Chapter 6

Demos

24

